Source code for gftool.lattice.square

r"""2D square lattice.

The dispersion of the 2D square lattice is given by

.. math:: ϵ_{k_x, k_y} = 2t [\cos(k_x) + \cos(k_y)]

which takes values in :math:`ϵ_{k_x, k_y} ∈ [-4t, +4t] = [-D, +D]`.

:half_bandwidth: The half_bandwidth corresponds to a nearest neighbor hopping
                 of `t=D/4`

"""
import numpy as np

from mpmath import mp
from scipy.special import ellipkm1

from gftool._util import _u_ellipk


[docs]def gf_z(z, half_bandwidth): r"""Local Green's function of the 2D square lattice. .. math:: G(z) = \frac{2}{πz} ∫^{π/2}_{0} \frac{dϕ}{\sqrt{1 - (D/z)^2 \cos^2ϕ}} where :math:`D` is the half bandwidth and the integral is the complete elliptic integral of first kind. See [economou2006]_. Parameters ---------- z : complex np.ndarray or complex Green's function is evaluated at complex frequency `z`. half_bandwidth : float Half-bandwidth of the DOS of the square lattice. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/4` Returns ------- gf_z : complex np.ndarray or complex Value of the square lattice Green's function References ---------- .. [economou2006] Economou, E. N. Green's Functions in Quantum Physics. Springer, 2006. Examples -------- >>> ww = np.linspace(-1.5, 1.5, num=500) >>> gf_ww = gt.lattice.square.gf_z(ww, half_bandwidth=1) >>> import matplotlib.pyplot as plt >>> _ = plt.axhline(0, color='black', linewidth=0.8) >>> _ = plt.plot(ww, gf_ww.real, label=r"$\Re G$") >>> _ = plt.plot(ww, gf_ww.imag, '--', label=r"$\Im G$") >>> _ = plt.ylabel(r"$G*D$") >>> _ = plt.xlabel(r"$\omega/D$") >>> _ = plt.xlim(left=ww.min(), right=ww.max()) >>> _ = plt.legend() >>> plt.show() """ z_rel_inv = half_bandwidth/z elliptic = _u_ellipk(z_rel_inv**2) gf_z = 2./np.pi/half_bandwidth*z_rel_inv*elliptic return gf_z
[docs]def hilbert_transform(xi, half_bandwidth): r"""Hilbert transform of non-interacting DOS of the square lattice. The Hilbert transform is defined .. math:: \tilde{D}(ξ) = ∫_{-∞}^{∞}dϵ \frac{DOS(ϵ)}{ξ − ϵ} The lattice Hilbert transform is the same as the non-interacting Green's function. Parameters ---------- xi : complex np.ndarray or complex Point at which the Hilbert transform is evaluated half_bandwidth : float half-bandwidth of the DOS of the 2D square lattice Returns ------- hilbert_transform : complex np.ndarray or complex Hilbert transform of `xi`. Notes ----- Relation between nearest neighbor hopping `t` and half-bandwidth `D` .. math:: 4t = D See Also -------- gftool.lattice.square.gf_z """ return gf_z(xi, half_bandwidth)
[docs]def dos(eps, half_bandwidth): r"""DOS of non-interacting 2D square lattice. Has a van Hove singularity (logarithmic divergence) at `eps = 0`. Parameters ---------- eps : float np.ndarray or float DOS is evaluated at points `eps`. half_bandwidth : float Half-bandwidth of the DOS, DOS(| `eps` | > `half_bandwidth`) = 0. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/4` Returns ------- dos : float np.ndarray or float The value of the DOS. See Also -------- gftool.lattice.square.dos_mp : multi-precision version suitable for integration References ---------- .. [economou2006] Economou, E. N. Green's Functions in Quantum Physics. Springer, 2006. Examples -------- >>> eps = np.linspace(-1.1, 1.1, num=500) >>> dos = gt.lattice.square.dos(eps, half_bandwidth=1) >>> import matplotlib.pyplot as plt >>> _ = plt.plot(eps, dos) >>> _ = plt.xlabel(r"$\epsilon/D$") >>> _ = plt.ylabel(r"DOS * $D$") >>> _ = plt.axvline(0, color='black', linewidth=0.8) >>> _ = plt.ylim(bottom=0) >>> _ = plt.xlim(left=eps.min(), right=eps.max()) >>> plt.show() """ eps_rel = np.asarray(eps / half_bandwidth) dos = np.zeros_like(eps_rel) nonzero = abs(eps_rel) <= 1 elliptic = ellipkm1(eps_rel[nonzero]**2) # on real axis we can use fast scipy Implementation dos[nonzero] = 2 / np.pi**2 / half_bandwidth * elliptic return dos
# ∫dϵ ϵ^m DOS(ϵ) for half-bandwidth D=1 # from: integral of dos_mp with mp.workdps(100) # for m in range(0, 22, 2): # with mp.workdps(100): # print(mp.quad(lambda eps: 2 * eps**m * dos_mp(eps), [0, 1]) # rational numbers obtained by mp.identify dos_moment_coefficients = { 2: 0.25, 4: 9/64, 6: 25/256, 8: (35/128)**2, 10: (63/256)**2, 12: 0.0508890151977539, 14: 0.0438787937164307, 16: 0.0385653460398316, 18: 0.0343993364367634, 20: 0.031045401134179, }
[docs]def dos_moment(m, half_bandwidth): """Calculate the `m` th moment of the square DOS. The moments are defined as :math:`∫dϵ ϵ^m DOS(ϵ)`. Parameters ---------- m : int The order of the moment. half_bandwidth : float Half-bandwidth of the DOS of the 2D square lattice. Returns ------- dos_moment : float The `m` th moment of the 2D square DOS. Raises ------ NotImplementedError Currently only implemented for a few specific moments `m`. See Also -------- gftool.lattice.square.dos """ if m % 2: # odd moments vanish due to symmetry return 0 try: return dos_moment_coefficients[m] * half_bandwidth**m except KeyError as keyerr: raise NotImplementedError('Calculation of arbitrary moments not implemented.') from keyerr
[docs]def dos_mp(eps, half_bandwidth=1): r"""Multi-precision DOS of non-interacting 2D square lattice. Has a van Hove singularity (logarithmic divergence) at `eps = 0`. This function is particularity suited to calculate integrals of the form :math:`∫dϵ DOS(ϵ)f(ϵ)`. If you have problems with the convergence, consider using :math:`∫dϵ DOS(ϵ)[f(ϵ)-f(0)] + f(0)` to avoid the singularity. Parameters ---------- eps : mpmath.mpf or mpf_like DOS is evaluated at points `eps`. half_bandwidth : mpmath.mpf or mpf_like Half-bandwidth of the DOS, DOS(| `eps` | > `half_bandwidth`) = 0. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/4` Returns ------- dos_mp : mpmath.mpf The value of the DOS. See Also -------- gftool.lattice.square.dos : vectorized version suitable for array evaluations References ---------- .. [economou2006] Economou, E. N. Green's Functions in Quantum Physics. Springer, 2006. Examples -------- Calculate integrals: >>> from mpmath import mp >>> mp.quad(gt.lattice.square.dos_mp, [-1, 0, 1]) mpf('1.0') >>> eps = np.linspace(-1.1, 1.1, num=500) >>> dos_mp = [gt.lattice.square.dos_mp(ee, half_bandwidth=1) for ee in eps] >>> dos_mp = np.array(dos_mp, dtype=np.float64) >>> import matplotlib.pyplot as plt >>> _ = plt.plot(eps, dos_mp) >>> _ = plt.xlabel(r"$\epsilon/D$") >>> _ = plt.ylabel(r"DOS * $D$") >>> _ = plt.axvline(0, color='black', linewidth=0.8) >>> _ = plt.ylim(bottom=0) >>> _ = plt.xlim(left=eps.min(), right=eps.max()) >>> plt.show() """ eps, half_bandwidth = mp.mpf(eps), mp.mpf(half_bandwidth) if mp.fabs(eps) > half_bandwidth: return mp.mpf('0') # around 0 we have to double precision for `1 - eps**2` to resolve around singularity with mp.workdps(mp.dps*2, normalize_output=True): mm = -mp.powm1(eps / half_bandwidth, mp.mpf('2')) return 2 / (mp.pi**2 * half_bandwidth) * mp.ellipk(mm)
[docs]def stress_trafo(xi, half_bandwidth): r"""Single pole integration over the stress tensor function. In analogy to the Hilbert transformation, we define the stress tensor transformation as .. math:: T(ξ) = ∫dϵ \tilde{Φ}_{xx}(ϵ)/(ξ - ϵ) with the stress tensor function .. math:: \tilde{Φ}_{xx}(ϵ) ≔ ∑_k 𝜕^2/𝜕k_x^2 δ(ϵ - ϵ_k) = -0.5 * ϵ * DOS(ϵ) Parameters ---------- xi : complex or complex array_like Point of evaluation of the transformation half_bandwidth : float Half-bandwidth of the square lattice. References ---------- .. [arsenault2013] Arsenault, L.-F., Tremblay, A.-M.S., 2013. Transport functions for hypercubic and Bethe lattices. Phys. Rev. B 88, 205109. https://doi.org/10.1103/PhysRevB.88.205109 """ return -0.5 * (xi*gf_z(xi, half_bandwidth=half_bandwidth) - 1)