r"""3D face-centered cubic (fcc) lattice.
The dispersion of the 3D face-centered cubic lattice is given by
.. math::
ϵ_{k_x,k_y,k_z} = 4t [\cos(k_x/2)\cos(k_y/2) + \cos(k_x/2)\cos(k_z/2) + \cos(k_y/2) \cos(k_z/2)]
which takes values in :math:`ϵ_{k_x, k_y, k_z} ∈ [-4t, +12t] = [-0.5D, +1.5D]`.
:half_bandwidth: The half_bandwidth corresponds to a nearest neighbor hopping
of `t=D/8`.
"""
import numpy as np
from mpmath import mp
from gftool._util import _u_ellipk
def _signed_sqrt(z):
"""Square root with correct sign for fcc lattice."""
# sign = np.where((z.real < 0) & (z.imag < 0), -1, 1)
sign = np.where(z.real < 0, -1, 1)
factor = np.where(sign == 1, 1, -1j)
return factor * np.lib.scimath.sqrt(sign*z)
[docs]def gf_z(z, half_bandwidth):
r"""Local Green's function of the 3D face-centered cubic (fcc) lattice.
Note, that the spectrum is asymmetric and in :math:`[-D/2, 3D/2]`,
where :math:`D` is the half-bandwidth.
Has a van Hove singularity at `z=-half_bandwidth/2` (divergence) and at
`z=0` (continuous but not differentiable).
Implements equations (2.16), (2.17) and (2.11) from [morita1971]_.
Parameters
----------
z : complex np.ndarray or complex
Green's function is evaluated at complex frequency `z`.
half_bandwidth : float
Half-bandwidth of the DOS of the face-centered cubic lattice.
The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/8`.
Returns
-------
gf_z : complex np.ndarray or complex
Value of the face-centered cubic lattice Green's function
References
----------
.. [morita1971] Morita, T., Horiguchi, T., 1971. Calculation of the Lattice
Green’s Function for the bcc, fcc, and Rectangular Lattices. Journal of
Mathematical Physics 12, 986–992. https://doi.org/10.1063/1.1665693
Examples
--------
>>> ww = np.linspace(-1.6, 1.6, num=501, dtype=complex)
>>> gf_ww = gt.lattice.fcc.gf_z(ww, half_bandwidth=1)
>>> import matplotlib.pyplot as plt
>>> _ = plt.axvline(-0.5, color='black', linewidth=0.8)
>>> _ = plt.axvline(0, color='black', linewidth=0.8)
>>> _ = plt.axhline(0, color='black', linewidth=0.8)
>>> _ = plt.plot(ww.real, gf_ww.real, label=r"$\Re G$")
>>> _ = plt.plot(ww.real, gf_ww.imag, '--', label=r"$\Im G$")
>>> _ = plt.ylabel(r"$G*D$")
>>> _ = plt.xlabel(r"$\omega/D$")
>>> _ = plt.xlim(left=ww.real.min(), right=ww.real.max())
>>> _ = plt.legend()
>>> plt.show()
"""
D = half_bandwidth / 2
z = np.asarray(1 / D * z)
retarded = z.imag > 0
z = np.where(retarded, np.conj(z), z) # calculate advanced only, and use symmetry
zp1 = z + 1
zp1_pow = _signed_sqrt(zp1)**-3
sum1 = 4 * _signed_sqrt(z) * zp1_pow
sum2 = (z - 1) * _signed_sqrt(z - 3) * zp1_pow
m_p = 0.5*(1 + sum1 - sum2) # eq. (2.11)
m_m = 0.5*(1 - sum1 - sum2) # eq. (2.11)
kii = np.asarray(_u_ellipk(m_p))
kii[m_p.imag < 0] += 2j*_u_ellipk(1 - m_p[m_p.imag < 0]) # eq (2.17)
gf = 4 / (np.pi**2 * D * zp1) * _u_ellipk(m_m) * kii # eq (2.16)
return np.where(retarded, np.conj(gf), gf) # return to retarded by symmetry
[docs]def dos(eps, half_bandwidth):
r"""DOS of non-interacting 3D face-centered cubic lattice.
Has a van Hove singularity at `z=-half_bandwidth/2` (divergence) and at
`z=0` (continuous but not differentiable).
Parameters
----------
eps : float np.ndarray or float
DOS is evaluated at points `eps`.
half_bandwidth : float
Half-bandwidth of the DOS, DOS(`eps` < -0.5*`half_bandwidth`) = 0,
DOS(1.5*`half_bandwidth` < `eps`) = 0.
The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/8`
Returns
-------
dos : float np.ndarray or float
The value of the DOS.
See Also
--------
gftool.lattice.fcc.dos_mp : multi-precision version suitable for integration
References
----------
.. [morita1971] Morita, T., Horiguchi, T., 1971. Calculation of the Lattice
Green’s Function for the bcc, fcc, and Rectangular Lattices. Journal of
Mathematical Physics 12, 986–992. https://doi.org/10.1063/1.1665693
Examples
--------
>>> eps = np.linspace(-1.6, 1.6, num=501)
>>> dos = gt.lattice.fcc.dos(eps, half_bandwidth=1)
>>> import matplotlib.pyplot as plt
>>> _ = plt.axvline(0, color='black', linewidth=0.8)
>>> _ = plt.axvline(-0.5, color='black', linewidth=0.8)
>>> _ = plt.plot(eps, dos)
>>> _ = plt.xlabel(r"$\epsilon/D$")
>>> _ = plt.ylabel(r"DOS * $D$")
>>> _ = plt.ylim(bottom=0)
>>> _ = plt.xlim(left=eps.min(), right=eps.max())
>>> plt.show()
"""
eps = np.asarray(eps)
singular = eps == -0.5*half_bandwidth
finite = (-0.5*half_bandwidth < eps) & (eps < 1.5*half_bandwidth) & ~singular
dos_ = np.zeros_like(eps)
dos_[finite] = 1 / np.pi * gf_z(eps[finite], half_bandwidth=half_bandwidth).imag
dos_[singular] = np.infty
return abs(dos_) # at 0.5D wrong sign
# ∫dϵ ϵ^m DOS(ϵ) for half-bandwidth D=1
# from: integral of dos_mp with mp.workdps(100)
# for m in range(0, 21, 1):
# with mp.workdps(100):
# print(mp.quad(lambda eps: eps**m * dos_mp(eps), [mp.mpf('-0.5'), 0, 1])
# rational numbers obtained by mp.identify
dos_moment_coefficients = {
0: 1,
1: 0,
2: 3/16,
3: 3/32,
4: 135/1024,
5: 135/1024,
6: 0.1611328125,
7: 0.1922607421875,
8: 0.24070143699646,
9: 0.305163860321045,
10: 0.394462153315544,
11: 0.516299419105052,
12: 0.683690124191343,
13: 0.913928582333027,
14: 1.23181895411108,
15: 1.67210463207448,
16: 2.28395076888283,
17: 3.13686893977359,
18: 4.32941325997849,
19: 6.00152324929046,
20: 8.35226611969712,
}
[docs]def dos_moment(m, half_bandwidth):
"""Calculate the `m` th moment of the face-centered cubic DOS.
The moments are defined as :math:`∫dϵ ϵ^m DOS(ϵ)`.
Parameters
----------
m : int
The order of the moment.
half_bandwidth : float
Half-bandwidth of the DOS of the 3D face-centered cubic lattice.
Returns
-------
dos_moment : float
The `m` th moment of the 3D face-centered cubic DOS.
Raises
------
NotImplementedError
Currently only implemented for a few specific moments `m`.
See Also
--------
gftool.lattice.fcc.dos
"""
try:
return dos_moment_coefficients[m] * half_bandwidth**m
except KeyError as keyerr:
raise NotImplementedError('Calculation of arbitrary moments not implemented.') from keyerr
def _signed_mp_sqrt(eps):
"""Square root with correct sign for fcc lattice."""
if eps >= 0:
return mp.sqrt(eps)
return -1j*mp.sqrt(-eps)
[docs]def dos_mp(eps, half_bandwidth=1):
r"""Multi-precision DOS of non-interacting 3D face-centered cubic lattice.
Has a van Hove singularity at `z=-half_bandwidth/2` (divergence) and at
`z=0` (continuous but not differentiable).
This function is particularity suited to calculate integrals of the form
:math:`∫dϵ DOS(ϵ)f(ϵ)`. If you have problems with the convergence,
consider using :math:`∫dϵ DOS(ϵ)[f(ϵ)-f(-1/2)] + f(-1/2)` to avoid the
singularity.
Parameters
----------
eps : mpmath.mpf or mpf_like
DOS is evaluated at points `eps`.
half_bandwidth : mpmath.mpf or mpf_like
Half-bandwidth of the DOS, DOS(`eps` < -0.5*`half_bandwidth`) = 0,
DOS(1.5*`half_bandwidth` < `eps`) = 0.
The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/8`
Returns
-------
dos_mp : mpmath.mpf
The value of the DOS.
See Also
--------
gftool.lattice.fcc.dos : vectorized version suitable for array evaluations
References
----------
.. [morita1971] Morita, T., Horiguchi, T., 1971. Calculation of the Lattice
Green’s Function for the bcc, fcc, and Rectangular Lattices. Journal of
Mathematical Physics 12, 986–992. https://doi.org/10.1063/1.1665693
Examples
--------
Calculate integrals:
>>> from mpmath import mp
>>> unit = mp.quad(gt.lattice.fcc.dos_mp, [-0.5, 0, 1.5])
>>> mp.identify(unit)
'1'
>>> eps = np.linspace(-1.6, 1.6, num=501)
>>> dos_mp = [gt.lattice.fcc.dos_mp(ee, half_bandwidth=1) for ee in eps]
>>> dos_mp = np.array(dos_mp, dtype=np.float64)
>>> import matplotlib.pyplot as plt
>>> _ = plt.axvline(0, color='black', linewidth=0.8)
>>> _ = plt.axvline(-0.5, color='black', linewidth=0.8)
>>> _ = plt.plot(eps, dos_mp)
>>> _ = plt.xlabel(r"$\epsilon/D$")
>>> _ = plt.ylabel(r"DOS * $D$")
>>> _ = plt.ylim(bottom=0)
>>> _ = plt.xlim(left=eps.min(), right=eps.max())
>>> plt.show()
"""
D = mp.mpf(half_bandwidth) * mp.mpf('1/2')
eps = mp.mpf(eps) / D
if 3 < eps < -1:
return mp.mpf('0')
if eps == -1:
return mp.inf
epsp1 = eps + 1
epsp1_pow = _signed_mp_sqrt(epsp1)**-3
sum1 = 4 * _signed_mp_sqrt(eps) * epsp1_pow
sum2 = (eps - 1) * _signed_mp_sqrt(eps - 3) * epsp1_pow
m_p = mp.mpf('0.5')*(1 + sum1 - sum2) # eq. (2.11)
m_m = mp.mpf('0.5')*(1 - sum1 - sum2) # eq. (2.11)
kii = mp.ellipk(m_p)
if m_p.imag < 0:
kii += 2j * mp.ellipk(1 - m_p) # eq (2.17)
return abs(4 / (mp.pi**3 * D * epsp1) * (_u_ellipk(m_m) * kii).imag) # eq (2.16)