Source code for gftool.lattice.bcc

r"""3D body-centered cubic (bcc) lattice.

The dispersion of the 3D body-centered cubic lattice is given by

.. math:: ϵ_{k_x, k_y, k_z} = 8t \cos(k_x) \cos(k_y) \cos(k_z)

which takes values in :math:`ϵ_{k_x, k_y, k_z} ∈ [-8t, +8t] = [-D, +D]`.

:half_bandwidth: The half_bandwidth corresponds to a nearest neighbor hopping
                 of `t=D/8`

"""
import numpy as np

from numpy.lib.scimath import sqrt
from mpmath import mp

from gftool._util import _u_ellipk


[docs]def gf_z(z, half_bandwidth): r"""Local Green's function of 3D body-centered cubic (bcc) lattice. Has a van Hove singularity at `z=0` (divergence). Implements equations (2.1) and (2.4) from [morita1971]_ Parameters ---------- z : complex np.ndarray or complex Green's function is evaluated at complex frequency `z`. half_bandwidth : float Half-bandwidth of the DOS of the body-centered cubic lattice. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/8` Returns ------- gf_z : complex np.ndarray or complex Value of the body-centered cubic Green's function at complex energy `z`. References ---------- .. [morita1971] Morita, T., Horiguchi, T., 1971. Calculation of the Lattice Green’s Function for the bcc, fcc, and Rectangular Lattices. Journal of Mathematical Physics 12, 986–992. https://doi.org/10.1063/1.1665693 Examples -------- >>> ww = np.linspace(-1.5, 1.5, num=500) >>> gf_ww = gt.lattice.bcc.gf_z(ww, half_bandwidth=1) >>> import matplotlib.pyplot as plt >>> _ = plt.axhline(0, color='black', linewidth=0.8) >>> _ = plt.plot(ww, gf_ww.real, label=r"$\Re G$") >>> _ = plt.plot(ww, gf_ww.imag, '--', label=r"$\Im G$") >>> _ = plt.xlabel(r"$\omega/D$") >>> _ = plt.ylabel(r"$G*D$") >>> _ = plt.xlim(left=ww.min(), right=ww.max()) >>> _ = plt.legend() >>> plt.show() """ z_rel = z / half_bandwidth # k = (sqrt(z_rel + 1) - sqrt(z_rel - 1)) / (2*sqrt(z_rel)) m = 0.5 * (1 - sqrt(1 - z_rel**-2)) return 4 / (np.pi**2 * z) * _u_ellipk(m)**2
[docs]def hilbert_transform(xi, half_bandwidth): r"""Hilbert transform of non-interacting DOS of the body-centered cubic lattice. The Hilbert transform is defined .. math:: \tilde{D}(ξ) = ∫_{-∞}^{∞}dϵ \frac{DOS(ϵ)}{ξ − ϵ} The lattice Hilbert transform is the same as the non-interacting Green's function. Parameters ---------- xi : complex np.ndarray or complex Point at which the Hilbert transform is evaluated half_bandwidth : float half-bandwidth of the DOS of the 3D body-centered cubic lattice Returns ------- hilbert_transform : complex np.ndarray or complex Hilbert transform of `xi`. Notes ----- Relation between nearest neighbor hopping `t` and half-bandwidth `D` .. math:: 8t = D See Also -------- gftool.lattice.bcc.gf_z """ return gf_z(xi, half_bandwidth)
[docs]def dos(eps, half_bandwidth): r"""DOS of non-interacting 3D body-centered cubic lattice. Has a van Hove singularity (logarithmic divergence) at `eps = 0`. Parameters ---------- eps : float np.ndarray or float DOS is evaluated at points `eps`. half_bandwidth : float Half-bandwidth of the DOS, DOS(| `eps` | > `half_bandwidth`) = 0. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/8` Returns ------- dos : float np.ndarray or float The value of the DOS. See Also -------- gftool.lattice.bcc.dos_mp : multi-precision version suitable for integration References ---------- .. [morita1971] Morita, T., Horiguchi, T., 1971. Calculation of the Lattice Green’s Function for the bcc, fcc, and Rectangular Lattices. Journal of Mathematical Physics 12, 986–992. https://doi.org/10.1063/1.1665693 Examples -------- >>> eps = np.linspace(-1.1, 1.1, num=500) >>> dos = gt.lattice.bcc.dos(eps, half_bandwidth=1) >>> import matplotlib.pyplot as plt >>> _ = plt.plot(eps, dos) >>> _ = plt.xlabel(r"$\epsilon/D$") >>> _ = plt.ylabel(r"DOS * $D$") >>> _ = plt.axvline(0, color='black', linewidth=0.8) >>> _ = plt.ylim(bottom=0) >>> _ = plt.xlim(left=eps.min(), right=eps.max()) >>> plt.show() """ eps = np.asarray(eps) eps_rel = eps / half_bandwidth dos_ = np.zeros_like(eps) singular = eps_rel == 0 finite = (abs(eps_rel) <= 1) & ~singular # identity `K(m) = (1/m) [K(m) + iK'(1/m)]` could be used to avoid 1/0 m = 0.5 - 0.5j*np.sqrt(eps_rel[finite]**-2 - 1) Ksqr = _u_ellipk(m)**2 dos_[finite] = -4 / (np.pi**3 * abs(eps[finite])) * Ksqr.imag dos_[singular] = np.infty return dos_
# ∫dϵ ϵ^m DOS(ϵ) for half-bandwidth D=1 # from: integral of dos_mp with mp.workdps(100) # for m in range(0, 22, 2): # with mp.workdps(100): # print(mp.quad(lambda eps: 2 * eps**m * dos_mp(eps), [0, 1]) # rational numbers obtained by mp.identify dos_moment_coefficients = { 2: 1/8, 4: 27/512, 6: 5**3 / 2**12, 8: 0.020444393157959, 10: 0.0149039626121521, 12: 0.0114798462018371, 14: 0.00919140747282654, 16: 0.0075734863820287, 18: 0.00638006491682219, 20: 0.00547010815806043, }
[docs]def dos_moment(m, half_bandwidth): """Calculate the `m` th moment of the body-centered cubic DOS. The moments are defined as :math:`∫dϵ ϵ^m DOS(ϵ)`. Parameters ---------- m : int The order of the moment. half_bandwidth : float Half-bandwidth of the DOS of the 3D body-centered cubic lattice. Returns ------- dos_moment : float The `m` th moment of the 3D body-centered cubic DOS. Raises ------ NotImplementedError Currently only implemented for a few specific moments `m`. See Also -------- gftool.lattice.bcc.dos """ if m % 2: # odd moments vanish due to symmetry return 0 try: return dos_moment_coefficients[m] * half_bandwidth**m except KeyError as keyerr: raise NotImplementedError('Calculation of arbitrary moments not implemented.') from keyerr
[docs]def dos_mp(eps, half_bandwidth=1): r"""Multi-precision DOS of non-interacting 3D body-centered lattice. Has a van Hove singularity (logarithmic divergence) at `eps = 0`. This function is particularity suited to calculate integrals of the form :math:`∫dϵ DOS(ϵ)f(ϵ)`. If you have problems with the convergence, consider using :math:`∫dϵ DOS(ϵ)[f(ϵ)-f(0)] + f(0)` to avoid the singularity. Parameters ---------- eps : mpmath.mpf or mpf_like DOS is evaluated at points `eps`. half_bandwidth : mpmath.mpf or mpf_like Half-bandwidth of the DOS, DOS(| `eps` | > `half_bandwidth`) = 0. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/8` Returns ------- dos_mp : mpmath.mpf The value of the DOS. See Also -------- gftool.lattice.bcc.dos : vectorized version suitable for array evaluations References ---------- .. [morita1971] Morita, T., Horiguchi, T., 1971. Calculation of the Lattice Green’s Function for the bcc, fcc, and Rectangular Lattices. Journal of Mathematical Physics 12, 986–992. https://doi.org/10.1063/1.1665693 Examples -------- Calculate integrals: >>> from mpmath import mp >>> mp.quad(gt.lattice.bcc.dos_mp, [-1, 0, 1]) mpf('1.0') >>> eps = np.linspace(-1.1, 1.1, num=500) >>> dos_mp = [gt.lattice.bcc.dos_mp(ee, half_bandwidth=1) for ee in eps] >>> dos_mp = np.array(dos_mp, dtype=np.float64) >>> import matplotlib.pyplot as plt >>> _ = plt.plot(eps, dos_mp) >>> _ = plt.xlabel(r"$\epsilon/D$") >>> _ = plt.ylabel(r"DOS * $D$") >>> _ = plt.axvline(0, color='black', linewidth=0.8) >>> _ = plt.ylim(bottom=0) >>> _ = plt.xlim(left=eps.min(), right=eps.max()) >>> plt.show() """ eps, half_bandwidth = mp.mpf(eps), mp.mpf(half_bandwidth) if mp.fabs(eps) > half_bandwidth: return mp.mpf("0") if eps == mp.mpf("0"): return mp.inf eps_rel = eps / half_bandwidth m = mp.mpf("0.5") - mp.mpc("0", "0.5")*mp.sqrt(mp.powm1(eps_rel, -2)) Ksqr = mp.ellipk(m)**2 return -4 / (mp.pi**3 * mp.fabs(eps)) * Ksqr.imag